
MOTION OF A VORTEX PAIR BETWEEN PARALLEL WALLS 

P. I. Geshev and B. S. Ezdin UDC 532.032 + 532.527 

I. INTRODUCTION 

In addition to ideal fluid hydrodynamics [ix 2], the concept of point vortices is used 
in the theory of superfluid helium [3], as well as in the model of a strongly magnetized 
plasma where the behavior of the electrons and ions is mathematically equivalent to vortex 
motion [4]. Although energy dissipation effects are always present in real phenomena occur- 
ring in a continuous medium, a large class of problems exists, where these effects can be 
neglected. This is valid for any vortex system being examined in short time intervals. In 
liquid helium at temperatures close to absolute zero, the energy dissipation can generally 
be neglected, and the system of quantum vortices considered as ideal [3]. The question of 
integrability of the vortex equations of motion is interesting. The motion in n-dimenslon- 
al phase space occurs along a manifold of dimensionality n -- k, where k is the number of in- 
tegrals of the dynamical system. The necessary condition of stochasticity of the motion is 
n-- k > 2 [5]. It is shown in [6, 7] that the problem of three vortices in an unlimited 
space is integrated exactly while stochastic trajectories [6, 8] appear in a system of four 
vorticesunder definite initial conditions. If the domain of vortex motion is bounded by 
impermeable walls, then the stochasticity already appears in a system of two vortices [9, i0]. 

It is shown in this paper that the motion of two vortices between parallel walls is 
still another exactly integrable case. 

2. EQUATIONS OF MOTION AND CONSERVATION INTEGRALS 

Kirchhoff [ii] first obtained the equations of motion for a system of vortices in un- 
limited space. Routh [12] described the motion of one vortex in a simply connected domain, 
and Lin proposed the solution for a system of N vortices in a multiconnected domain [13]. 
In the case of the motion of N vortices, the method of conformal mapping [I0] is used in a 
simply-connected domain. 

Let the vortex motion occur in a two-dimensional simply-connected domain with the known 
boundary r. In this case all the hydrodynamic information can be obtained from the stream 
function ~ that satisfies the Poisson equation- 

A~ = -~ (2.1) 

and is the third component of the vector potential A = (0, 0, 9) of the velocity field u = 
rot A. The right side in (2.1) is the vorticity of the velocity field. In the case of point 
ideal vortices m can be written in the form 

N 

o~= ~ TnS(x--xn(t)), (2.2) 
m-=l 

where Yn is the circulation around the n-th vortex, 6(x- xn(t)) is a delta function, and Xn(t) 
is the instantaneous location of the n-th vortex. In order to solve (2.1) with the right 
side (2.2) and the following condition on the boundary 

~(x,~ ~ r )  = o,  ( 2 . 3 )  

it is necessary to known an analytic function mapping the domain of the real vortex motion 
D of the z = x + iy plane onto the canonical domain [w!~<1 , a circle in the w = u + iv plane. 
Then the Green's function of the problem (2.1)-(2.3) is determined by the formula [14] 

G (x, Xo)= ~_~_ ~ In I tw(z)--w(%)---~-w~) ~oo) I" 
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The s t ream f u n c t i o n  has the  form 

(2.4) 

where the bar denotes  the complex con juga te .  The v e l o c i t y  of the  k - t h  vo r t ex  i s  determined 
by a l l  the system v o r t i c e s  and t h e i r  images in  the w a l l s .  The k - th  vo r t ex  does not  induce 
v e l o c i t y  upon i t s e l f .  Consequent ly,  to  f ind  the v e l o c i t y  of  the  k - t h  vo r t ex  from (2 .4 ) ,  
the  term (y~/2n)|nlz--z~l should be s u b t r a c t e d ,  and then the  d e r i v a t i v e s  of  the d i f f e r e n c e  
being obta ined  a t  the  po in t  z - z k should be taken accord ing  to the d e f i n i t i o n  of  the v e l o c -  
i t y .  Then the complex vo r t ex  v e l o c i t y  i s  determined by the  equa t ion  

d; h ~hw~ ~ w~ ~ [  ] ~ (2.5) ~=~-2~i'~--~7~+w ~ L J W h - ' ~  ~ - ~  ' 
# 

where w~ = w(zh); w~ = dw(zh)/dz~; w~" = d2w(zk)/dz~. For k = 1, . . . ,  N the  formulae (2.5) y i e l d  the 
dynamic equa t ions  of  motion of  a system of  N po in t  v o r t i c e s .  

The Hamil tonian of  a system of  N i d e a l  v o r t i c e s  i s  ob ta ined  in [10]: 

�9 t n . l - - w ~  -{-Y~ ~Yn n l - - - - - - ~ -  I / .  (2.6) 

It is easy to see that the system of equations (2.5) can be represented in the Hamiltonian 
form 

yk-jT = 2i 

or 

Yhxk = OHms, Yh)/OYk, ?hYh =--OH~h, y~)/~xk. (2.7) 
The c a n o n i c a l l y  conjuga te  v a r i a b l e s  are  qk = Xk, Ph =ThYk. 

I f  the p h y s i c a l  domain of  motion D i s  a c i r c l e  {w ~ z ) ,  because of  i nva r i ance  of  the 
Hamil tonian (2.6) r e l a t i v e  to r o t a t i o n ,  an a d d i t i o n a l  momentum i n t e g r a l  e x i s t s  M ffi 

"N 

~y~lzkl  ~ =const. The constancy of  M i s  r e l a t e d  to conse rva t ion  of  the t o t a l  moment of  f l u i d  
k=l  

momentum in  the c i r c l e  [10]. I f  the  " p h y s i c a l "  domain of  vo r t ex  motion i s  a s t r i p ,  then the 
Hamil tonian (2.6) i s  i n v a r i a n t  r e l a t i v e  to s h i f t  a long i t ,  and t h e r e f o r e ,  an a d d i t i o n a l  
motion i n t e g r a l ,  the " impulse" ,  should e x i s t .  Indeed,  fo r  a s h i f t  in  the  coo rd ina t e  system 
by ~x, the vortex coordinates receive the increment 8zh= 6z. Evaluating the variation H 
by using (2.7), and equating it to zero, we obtain 

OH 6z~ OH d 
6H = ~ -F O,-~SYk = ~ "  YhYk 8z, 

k=l  

N 

from whence it is seen that the quantity ("impulse")P = ~, YkYk i s  conserved. 
k=l 

[15] 

3. MOTION OF VORTICES IN THE STRIP lyl~<0.5,1xl<oo 

Formulas for the direct and reverse mapping of a strip on a unit circle have the form 

exp (~z) - -  t i t ~-  w ( 3 . 1 )  
W = exp  (~z) -~- i '  Z = ~ I n  l - -  w" 

Using (3.1) and (2.6), we obtain the Hamiltonian for a system of two vortices in a strip 
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H - -  1 
4~ 

The Hamiltonian of ( 2 . 7 )  

x ~ =  ?~ - -  -~- tg ~y~ 

~2 

is written in the form 

- -  ch ~ ( ~  - ~ )  - cos a (y~ - y~) - -  ch ~ (~ --  ~:~) + cos ~ (y~ + Yd ; 

[ sh =(Xl-- x') sh~(xt--  x') ] 

We introduce the notation 

where  v = ?t/u and E i s  t h e  i n t e r a c t i o n  e n e r g y .  The s y s t e m  of  dynamica l  e q u a t i o n s  can 
now be written in the form 

~t ~ ~ (t - 0) (~i,  ~ (y~ = Yd + O sin ~ (y~ + ~ , ) ) .  ( 3 . 2 )  
= - -  -X-  t g  gYt  - -  4Q (cos u ( h  - -  Y~) + cos ~ (Yt + y , ) )  ' 

~l_=.+ - 73 <t -Q)  ]/-4Qcosauyo-(sinu(yt-y2)-+.Qsin~(yt+y~))L ( 3 . 3 )  4 Q Coos ~ (u~ - y~) + cos ~ (y~ + u d )  

The equation of motion of the second vortex are Obtained by mutual commutation of the sub- 
scripts I and 2. 

The impulse P and the equation for the, difference xt -- x2 are the following 

P = ?tYl+?2Y~; (~.4) 

ch ~(~ - -  ~ )  = [cos ~(Yl - -  Y2) + Q cos ~ 1  + y2) l / ( i  - Q). ( 3 . 5 )  

If Y2 from (3.4) is substituted into (3.3), the variables are separated and integration per- 
formed with respect to yt, the solution yt(t) can be obtained in implicit form. The period 
of relative vortex motion will he expressed by the formula 

*$ 

~ i  ~r (cos ~ (~1 - y~) + cos a (yl + Y-O) 
T = 2  l - -O  

Yl 
dy~ X 

X 

V 4Q cos "z ~y~ - (sin ~ (Y l .  Y~) + Q sin ~ (Yt -~ Y2)) ~ '  

( 3 . 6 )  

where y~ and y~* are the "return points" determined from the condition that the radicand in 
(3.6) vanishes. The integral (3.6) diverges if the equality Q = I is satisfied somewhere in 
the domain of integration. The period T here becomes infinite and the motion infinite, i.e., 
according to (3.5) the vortices withdraw unlimltedly from each other. In the opposite case, 
T < ~, the motion is finite and the vortices move in a bound manner. After a time T the y 
coordinates of the vortices will have the same values as at the beginning of the motion; 
the x coordinates receive an increment Ax after this time, which is easily determined by in- 
tegrating (3.2) between 0 and T. It is clear that finite vortex motion will occur over 
closed trajectories in a coordinate system moving with the velocity V = Ax/T. 

The vortex motion is determined completely by the energy E and impulse P, which depend, 
in turn, on the magnitude and sign of ~ and the initial vortex location. There are five 
possible types of trajectories, examples of which are demonstrated below. 

To verify all the deductions, a numerical computation program was compiled that permits 
solution of the system (2.5) by the Runge-Kutta method, finding the values of E and P by �9 
the given initial locations of the vortices, determination of the limits of integration Yt 
and y~* by the method of halving the segments, and calculation of the periods of themotion and 
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Fig. 4 

the velocity of the coordinate system in which the trajectories are closed. 

Periodic trajectories of the vortices 6, = Y= = I,T = 0.682) are shown in Fig. i in a 
coordinate system at rest (a) and in a system moving at the velocity V = 0.689 (b). The 
points indicate the successive vortex locations; the time interval between points is t = 
0.125. The initial vortex location is denoted by crosses. The separatrix dividing the fi- 
nite and infinite trajectories for v = 1 and a symmetric initial vortex location is shown 
in Fig. 2. The trajectories of infinite motion are shown in Fig. 3 for v<O, v1 =--7~=~. 
If the y coordinates of the initial vortex location are identical, i.e., P = 0, then the 
symmetric trajectory of Fig. 3a is realized. In the opposite case the trajectory of Fig. 
3b is realized. The vortex closest to the wall here moves more rapidly, determining the 
sign of the impulse. The case when several different trajectories exist for the very same 
integrals of motion will be called degenerate (by analogy with quantum mechanics). The max- 
imal degree of degeneration equals three. The trajectories of triply degenerate motion, 
two infinite (b) and one finite (a), are displayed in Fig. 4. Vortex motions can be classi- 
fied rigorously by investigating the zeros of the radicand (3.6) for the period T. 

Despite the fact that (3.2) and (3.3) are not integrated successfully in simple analyt- 
ical form, all the motion characteristics can therefore be found to any degree of accuracy 
by numerical methods since the solution of the problem of two vortices between parallel 
walls is reduced to quadratures. Hence, this case, can be considered as still another ex- 
ample of exactly integrable nonstationary ideal fluid motion. 

In conclusion, we note that the theory elucidated for vortex motion is purely kinematic 
in nature: The Euler equations have been used. These equations can be utilized to find 
the pressure at any point of the flow in terms of the Cauchy--Lagrange integral. 

I. 
2. 

LITERATURE CITED 

H. Lamb, Hydrodynamics [Russian translation], OGIZ, Moscow-Leningrad (1947). 
L. M. Milne-Thompson, Theoretical Hydrodynamics [Russian translation], Mir, Moscow (1964), 

666 



3. S. Putterman, Hydrodynamics of Superfluid Fluids ~Russian translation], Mir, Moscow 
(1964). 

4. S. F. Edwards and J. B. Taylor, "Negative temperature states of two-dlmensional plasmas 
and vortex fluids," Proc. Roy. Soc. London, A336, 257 (1974). 

5. N. V. Butenin, Yu. I. Neimark, and N. A. Fufaev, Introduction to the Theory of Nonlin- 
ear Oscillations [in Russian], Nauka, Moscow (1976). 

6. H. Aref and N. Pomphrey, "Integrable and chaotic motions of four vortices," Proc. Roy. 
Soc. London, A380, 359 (1982). 

7. E. A. Novikov, "Dynamics and statistics of a vortex system," Zh. Eksp. Teor. Fiz., 68, 
No. 5 (1975). 

8. E. A. Novikov and Yu. B. Sedov, "Stochastic properties of a system of four vortices," 
Zh. Eksp. Teor. Fiz., 75, No. 3 (1978). 

9. E. A. Novikov and Yu. B. Sedov, "Stochastic vortices," Pis'ma, Zh. Eksp. Teor. Fiz., 
29, No. 12 (1979). 

i0. P. I. Geshev and A. I. Chernykh, Vortex Motion in a Two-Dimensional Simply Simply-Con- 
nected Domain. Preprint No. 65, Izd. Inst. Teor. Fiz. Sib. Otd. Akad. Nauk SSSR (1980). 

ii. H. Kirchhoff, Mechanics [Russian translation], Izd. Akad. Nauk SSSR, Moscow (1962). 
12. E. J. Routh, "Some applications of conjugate functions," Proc. London Math. Soc., 12, 

73 (1881). 
13. C. C. Lin, On the Motion of Vortices ~n Two Dimensions, Univ. Toronto Press, Toronto 

(1943). 
14. A. G. Sveshnikov and A. N. Tikhonov, Theory of Functions of a Complex Variable [in Rus- 

sian], Nauka, Moscow (1967). 
15. M. A. Lavrent'ev and B. V. Shabat, Methods of the Theory of Functions of a Complex 

Variable [in Russian], Nauka, Moscow (1965). 

TWO TYPES OF VORTEX TUBE 

V. A. Bubnov, A. A. 
and Kh. Z. Ustok 

Solov'ev UDC 532.51 

Experimental and theoretical modeling is an efficient method of solving problems of 
vortex generation [1-7]. 

It is noted that in a number of references that vertical flows i~linear vortices are 
everywhere directed upwards, starting from the axis, right out to the boundary of the solid 
rotation, and only far away at the periphery does the direction change to the opposite [8, 
9]. In other investiagtions the authors noted descending axial flows and flows ascending 
along the walls of the vertex tube [i0, ii], and the vortex structure is called one-cell 
and two-cell, respectively. In [i0] and attempt was made to classify vortex tubes, depend- 
ing on the ratio of intensity of the vertical streams and the circulation. The present 
paper discusses an experimental study of transition from a one-cell to a two-cell vortex. 

The vortex tubes are induced in a vortex chamber. The chamber height is 0.665 m. Its 
diameter is 0.382 m. 

The upper part of the chamber has a four-blade vortex generator, mounted on the axis 
of a motor. The height of the rectangular blades was 0.07 m, and the width in some of the 
tests was 0.05 m, and in others 0.i0 m. The generator was attached to the axis of the motor 
behind a heavy cylindrical platform. The platform diameter was 0.21 m, and its height was 
0.05 m. The function of the platform was to deviate the flow, which arrived at the motor 
after interacting with the lower surface of the platform. In addition, this platform pro- 
vided a stable frequency of rotation of the vortex generator. At the top the chamber was 
covered by a lid. Tests were conducted with the chamber both open and closed, and here an 
annular gap of the required dimensions was assigned by varying the diameter of the lid. 

By using the gap in the lid we could change the dimensions of the zone in which the 
flow received angular momentum. In addition, as the gap changed there was a change in the 
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